All Numbers Are Equal . F7 u" |) `5 w' yTheorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 1 W3 w9 a( M2 M( V* \5 a6 J " F' ^6 p6 t+ Y1 V1 ~a + b = t: D. Z0 y* A/ c
(a + b)(a - b) = t(a - b)! x* J: q2 j' G
a^2 - b^2 = ta - tb % Z! ~1 S: S/ h5 ^% I# o% aa^2 - ta = b^2 - tb 1 D9 G2 h' O! q4 z aa^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4* d& Z: R+ f) r7 L: @# i
(a - t/2)^2 = (b - t/2)^24 n7 q4 N5 o: M
a - t/2 = b - t/2 6 b9 b1 | v7 `5 o" j! Sa = b 0 q. K: K" N6 m- h4 c9 ~ 7 v& x* A/ q! _" I. u" m$ ASo all numbers are the same, and math is pointless.