 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal 6 Z1 ~1 y0 F1 |% V# o! L; U
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then ) h1 S8 p+ b# R" p
: ]/ T' v) Z0 t7 |. P, Y# [a + b = t s6 O' R! v% Q5 s3 n
(a + b)(a - b) = t(a - b)3 z7 `3 N1 E1 K! P. x$ J) D. ]2 ~
a^2 - b^2 = ta - tb8 ]6 c% K- M7 F- l2 ~
a^2 - ta = b^2 - tb- G( q W% R/ |
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4
/ g) W0 q+ {1 n0 ~(a - t/2)^2 = (b - t/2)^2
9 }, K! ]2 s8 l# aa - t/2 = b - t/2* n) M3 d: `: @$ H& ?' k
a = b 2 t! H: K# @9 f0 L/ N: x- _. _
: E9 g, v( [# Z( S, k
So all numbers are the same, and math is pointless. |
|