 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal 5 l l2 [1 ~( t$ v3 f0 b
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then
) U! `# g: J, |1 \
. G$ k3 y/ k$ V( I* A" S- ta + b = t
/ g$ s* v' |0 P2 C! }(a + b)(a - b) = t(a - b)
& B( j1 ]6 A/ F0 ia^2 - b^2 = ta - tb- M) E2 O3 g1 J6 y* U
a^2 - ta = b^2 - tb
% S: Z& W( Z2 |. ^a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4* w" Y* o: F/ K" J+ i6 T) V
(a - t/2)^2 = (b - t/2)^2
3 p: I" v; |( Qa - t/2 = b - t/2
# R3 k4 v2 I$ U8 d+ s/ U) |3 Aa = b
' K" b, r7 X* T5 J, ~( T- H a: \/ n5 T
So all numbers are the same, and math is pointless. |
|