 鲜花( 19)  鸡蛋( 0)
|
Solution:
0 x* M& J' X) u. X% R9 P& X+ p, k9 ?8 Q+ R
From: d{(a+bx)*C(x)}/dx =-k C(x) + s
9 O* c! ]5 z4 x& _: Pso:
& G B+ o- q; p2 }: ]0 I, G) P6 f) Z4 j( _: J: o5 R, G5 L
bC(x) + (a+bx) dC(x)/dx = -kC(x) +s
& ~( ]- w1 P o$ H) V0 d- {: O3 Ii.e.
2 p7 V4 m0 j+ S$ m1 Q
) j7 I: S& r8 D- S(a+bx) dC(x)/dx = -(k+b)C(x) +s
; g' q) N$ N% {
. M* @1 b' d' v0 I) V& r' o: F2 Z
& P4 Q! z8 G, g: P/ ~introduce a tranform: KC(x)+s =Y(x), where K=-(k+b)
! S. _# ]: n9 }3 m& H: |which means: KdC(x)/dx = dY(x)/dx or dC(x)/dx = (1/K)dY/dx8 ]7 |2 P" q5 `2 y9 @0 i. U
therefore:& P: i: o+ g* p8 Z6 D
+ R& \& \6 [1 N+ n* m: ~{(a+bx)/K} dY(x)/dx=Y(x)
. J# @8 f- H, U$ q4 r) Y/ N7 N* s1 J* Q# Z* i
from here, we can get:8 d* D& o4 I! O0 i
# ]# k. O2 i. m9 b, _$ n1 [* ~
dY(x)/Y(x) = [K/(a+bx)]dx i.e. dY(x)/Y(x) = K/b {(a+bx)}d(a+bx)2 v/ T0 J7 k& x# ]
5 H% h1 q x5 m6 G% U5 |so that: ln Y(x) =( K/b) ln(a+bx)" s8 n: N& k8 `" y! D6 m
% l$ K: m. k, w9 X) H" n- r
this means: Y(x) = (a+bx)^(K/b)/ I4 U. A: q! V4 }
by using early transform, we can have:& w; n! x' g6 \% J9 @! {
% ?& K0 x0 o, }-(k+b)C(x)+s = (a+bx)^(k/b+1)
( Z' D5 l% E2 o4 S( ?. _4 P: G
7 G/ c% ^- K, j T0 Pfinally:
; p9 ]9 t1 `- r l w& I
2 V3 F- D3 g" C3 g4 u$ m% jC(x)= -1/(k+b)*{[(a+bx)^(k/b+1)] - s) |
|