All Numbers Are Equal 3 E1 U* O6 H0 c* ~/ U4 w+ {
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then ! y0 l/ T# b2 u4 }+ X! ^5 c- P$ T6 ?& y4 H8 K$ r1 Y4 a* J* E
a + b = t + w5 {* C# h l. W(a + b)(a - b) = t(a - b) . j% q; h; K/ [a^2 - b^2 = ta - tb - `8 o! n- z7 O7 Ga^2 - ta = b^2 - tb 9 ?9 M( J1 H7 a) ~- l/ Ya^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/47 E+ j c4 y9 B6 v, T7 H1 m& d% Y
(a - t/2)^2 = (b - t/2)^2 ! ]! e/ M( U: `. x" k3 pa - t/2 = b - t/24 ]$ t- D3 y$ f% T. W+ k: A
a = b 3 Z) D, S' W. B" }# F! Y5 |
$ Q1 }/ k6 S) O+ h6 Z- s% }* \# F
So all numbers are the same, and math is pointless.