 鲜花( 0)  鸡蛋( 0)
|
Suppose Intr is annually compounded
0 j4 G8 U, o9 a) |: s) [ J Month 0 Mon. 8 Mon. 12
! g+ ?, j) c# ^8 QCash Principal X -750 -950 " ^4 H) ?" O, @0 F* T2 ^2 L3 ]
Cash Intr (Should Pay) -X*9.5%*8/12 -(X-750)*9.5%*4/12
' s& N% b! z( ?! [$ l! ?PV at mon 0 X -[750+X*9.5%*8/12] -[950+(X-750)*9.5%*4/12]; V* |/ b( S& k" `, o/ S
/(1+7.75%*8/12) /(1+7.75%*12/12)
( e5 \! V2 b$ u0 V7 e% X& ]9 P/ e3 U+ }! g$ H0 E h9 Q+ F
these 3 should add up to 0, i.e. NPV at month 0 is 0.
" e) _" M2 R( s/ f
: A9 E/ z) d: B7 J2 yConclusion X = 1729.8 7 t0 {9 l S8 l. _+ |
6 P z3 [7 S! J6 Z0 a G9 \
So, Initial borrowing was 1730 *(1+7.5%) 1859.5 approx. $1,860 0 q: C! `5 C7 M
|
|