 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal ; n/ y2 E1 b. B5 C9 f
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then
3 `( T( z9 i9 l( ^( f M2 z) z! ]8 G; p* F! \8 N
a + b = t
$ A+ \& q1 \3 v f* f(a + b)(a - b) = t(a - b)
: @* V/ q4 Q7 N( @, |! K. sa^2 - b^2 = ta - tb* ^! D/ e7 B8 l9 }. v* d7 ^5 E
a^2 - ta = b^2 - tb
0 @4 H2 Q: ^: \3 c, ja^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4
6 m$ E3 ?, C8 r3 m8 K* M2 }(a - t/2)^2 = (b - t/2)^23 @- p' }. }0 A# R( _( {/ p2 G
a - t/2 = b - t/2
) g/ e, U9 n5 C% E' na = b : H6 e2 c. v8 |! ^) ~+ R: N
$ e1 T; G8 J5 ]/ ]8 g9 f
So all numbers are the same, and math is pointless. |
|