All Numbers Are Equal 4 K/ ]& U; _8 _( e) Y
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 1 W# K. O/ l6 K" f4 J2 H
7 y/ h2 {$ s' j& F7 m7 ea + b = t* M0 j- ?) p+ O- E, W
(a + b)(a - b) = t(a - b)1 T5 c z$ U. u! l
a^2 - b^2 = ta - tb% R6 C# j7 i. z7 a. I. }
a^2 - ta = b^2 - tb o0 Q) h; |& |& G- }1 F# F! o
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4 0 C6 _7 d$ \9 I(a - t/2)^2 = (b - t/2)^23 h3 G6 O" E! N! c) B+ Q% @" V7 c
a - t/2 = b - t/2( V7 j/ @2 q8 v- ^
a = b / U+ h$ N% ]! l u i 5 W' K1 _- q: z& H/ NSo all numbers are the same, and math is pointless.