 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal 7 Y V! x# c$ j6 \, ^5 M
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 4 R$ Y. l/ h( c, X0 W( o% c* U
4 M6 i1 i: p8 \5 Z( t& j8 l) i0 Ra + b = t
+ h* L3 q8 o, B8 R1 F(a + b)(a - b) = t(a - b)
5 s4 C- o( K6 _a^2 - b^2 = ta - tb8 g5 F1 N; I. `6 D3 ]. N
a^2 - ta = b^2 - tb* c' q3 @2 T- i. g+ {
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4 _8 s \5 [% B
(a - t/2)^2 = (b - t/2)^2
5 n: y0 t. ~) c9 ia - t/2 = b - t/2+ S+ G7 M( C }3 C
a = b - ]! b7 j5 a9 j* }3 i! l8 f
% z( D7 P$ [: K
So all numbers are the same, and math is pointless. |
|