All Numbers Are Equal 4 L: k; b* }; {1 J8 s
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then % a' [1 D u1 \9 t5 m+ \4 r9 `
a + b = t 9 g7 h# `3 u9 f5 }( t(a + b)(a - b) = t(a - b)3 S$ y) |9 L8 V/ H1 w% b6 h1 Q
a^2 - b^2 = ta - tb ) M! p! L" E6 {6 B; l' y4 m) ia^2 - ta = b^2 - tb r$ F: J) m( j& e
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4( d& }3 S2 H0 x3 z; U ~& _1 |1 U
(a - t/2)^2 = (b - t/2)^2 4 A' `" v" R1 V: _# qa - t/2 = b - t/29 b& @* l" Y! I: c0 w- F/ l
a = b 4 S; |3 G7 [! C" w/ E+ O 9 k# ~/ V" m, v2 A% |7 e: zSo all numbers are the same, and math is pointless.