All Numbers Are Equal : g [9 O( W; h: R' v
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then - |! l) h) R: V1 d/ N9 ?+ h4 J- o
5 H5 ~- P. t) V2 f4 z/ x Wa + b = t * R+ D2 \! P$ \(a + b)(a - b) = t(a - b) h1 T3 t8 Q& |7 `* va^2 - b^2 = ta - tb i5 Q$ P3 k4 i+ S% G2 i" t( @4 v; c
a^2 - ta = b^2 - tb $ f5 W; w( h- @a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4 6 z" L9 {' _" _* }( W6 Q9 N$ z/ N(a - t/2)^2 = (b - t/2)^23 S/ `8 {& _0 U& j0 t" H4 M$ G8 p
a - t/2 = b - t/24 d6 n7 u3 A$ I e& Q
a = b ' O2 c9 ?! I$ [3 A) O% ]
. ?) t+ I, _7 ?So all numbers are the same, and math is pointless.