 鲜花( 19)  鸡蛋( 0)
|
Solution:. G( Z1 R; w. R4 o
/ Q* h% j8 z% \9 r
From: d{(a+bx)*C(x)}/dx =-k C(x) + s" P# f2 z0 Q& z4 X
so:
/ n1 f" I" l7 o/ g) G" _" E& Q/ M' P. V, E% B' R1 i. h0 A% b+ y
bC(x) + (a+bx) dC(x)/dx = -kC(x) +s
- ~; h6 j' I2 v1 u# v3 Bi.e.
5 s3 E* a; C- V; q
% {7 E" T, h7 \% _(a+bx) dC(x)/dx = -(k+b)C(x) +s2 |, ]1 \" b9 o
% L! G7 W6 N0 `. U
. \+ I1 {; F; j- u# ^
introduce a tranform: KC(x)+s =Y(x), where K=-(k+b)
( O7 w+ h6 e& h$ w: N) iwhich means: KdC(x)/dx = dY(x)/dx or dC(x)/dx = (1/K)dY/dx7 n+ ^# i9 x- Q
therefore:- E7 ?7 v7 K. W# ~' e3 q
' K" `0 T$ \* [+ G
{(a+bx)/K} dY(x)/dx=Y(x)0 W! ?+ J! g% B& C' W4 B
0 S; P1 \* J: Z" {/ h7 f+ T0 t
from here, we can get:* U; p7 H2 w) s
1 s3 r# q4 n0 Y- WdY(x)/Y(x) = [K/(a+bx)]dx i.e. dY(x)/Y(x) = K/b {(a+bx)}d(a+bx)
+ d3 m' {' |& ^! ~( }4 t! ?8 E' \) m1 Y2 H
so that: ln Y(x) =( K/b) ln(a+bx)3 t& S8 d6 G3 B _
3 }' _* c- K9 T& Dthis means: Y(x) = (a+bx)^(K/b)8 h: i: C3 }$ X# i8 N; s& g( ~- e
by using early transform, we can have: e! m' q: v8 q% S1 K6 e, M3 p
+ R, O! Q7 W9 V9 L* _
-(k+b)C(x)+s = (a+bx)^(k/b+1). p$ V0 ], U: d' T) t& B/ g1 e
( |9 M- {' U' ]; Sfinally:
" S$ ]9 O' Y7 w* b8 c
/ f5 K9 P3 |/ W, c9 s: GC(x)= -1/(k+b)*{[(a+bx)^(k/b+1)] - s) |
|