 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal ) X8 p9 V3 C8 _3 D
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then # U8 V: r' S' Z
4 B) |! t p$ ~9 O, K
a + b = t
( M4 z1 N' c( u# m7 u- X! j(a + b)(a - b) = t(a - b)
! u7 D* A7 p& Z; e+ |$ Oa^2 - b^2 = ta - tb% o; P/ p% L8 ^9 B" y: u
a^2 - ta = b^2 - tb
$ s/ E: p- b6 ~. x0 J3 i: ua^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4$ _2 g3 v9 M1 C# h; @6 t
(a - t/2)^2 = (b - t/2)^2
3 T, O2 R# _+ q# p4 wa - t/2 = b - t/2 E' B% s7 f* P9 Y, P6 C
a = b 9 j2 X5 h4 s+ W7 e5 N
" g# x! B$ J0 p0 A2 S# p, LSo all numbers are the same, and math is pointless. |
|