 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal
0 ]" i B& |' LTheorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then
' Y V4 x Y0 m9 D5 q! p: e) o& P, g3 I$ h0 |
a + b = t, L( |1 d0 r1 O: b+ b4 W% d# a
(a + b)(a - b) = t(a - b). D+ J5 n9 F( T& I6 n* `
a^2 - b^2 = ta - tb
, [0 k, _) a% ^$ J5 Q% ta^2 - ta = b^2 - tb8 S, ]) O1 w5 E2 k4 I
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4
4 ~# s0 _0 Q' A( U% @1 N* @(a - t/2)^2 = (b - t/2)^2
. q) y" x3 Q- Ra - t/2 = b - t/2- P( R3 K# Z4 K$ _
a = b
4 M8 k# o" f1 D
$ p) Z+ M: L0 B& |; ^0 HSo all numbers are the same, and math is pointless. |
|