 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal * Z ^% n3 G d7 Q7 \
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then
/ h1 n8 C7 V/ H1 x" l
+ B2 z y; Q$ u) la + b = t5 L7 v: v; D f: s( ]
(a + b)(a - b) = t(a - b)" ?+ n" M" [, D
a^2 - b^2 = ta - tb5 O5 V, p. x- g! j; n/ Z
a^2 - ta = b^2 - tb
" S) n0 F2 O/ K( ya^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4
3 J E$ q+ L$ Z6 s9 }" V/ Y(a - t/2)^2 = (b - t/2)^2, S, o a- K0 i |# p1 Z O
a - t/2 = b - t/2
9 i- }2 W* W) d) Y. Fa = b
' E/ s. ]8 w3 q, _& ]% j9 i
1 C6 S8 a: L# @) u- L `So all numbers are the same, and math is pointless. |
|